Die Ressourcen sind geladen. Beförderung...

Quantitatives Handelssystem mit mehrfacher Regression und dynamischer Preisspanne

Schriftsteller:ChaoZhang, Datum: 2025-01-17 15:57:53
Tags:RSIATRBETASMA

 Multi-Factor Regression and Dynamic Price Band Quantitative Trading System

Übersicht

Diese Strategie ist ein quantitatives Handelssystem, das auf Multifaktor-Regression und dynamischen Preisbanden basiert. Die Kernlogik besteht darin, Preisbewegungen durch ein Multifaktor-Regressionsmodell vorherzusagen, indem mehrere Marktfaktoren wie BTC-Dominanz, Handelsvolumen und zurückgebliebene Preise kombiniert werden, um Preisbänder für die Signalgenerierung zu konstruieren. Die Strategie integriert mehrere Risikomanagement-Module, einschließlich Ausreißerfilterung, dynamisches Positionsmanagement und Trailing-Stops, was es zu einem umfassenden und robusten Handelssystem macht.

Strategieprinzipien

Die Strategie umfasst folgende Kernkomponenten: 1. Regressionsvorhersage-Modul: Verwendet eine multifaktorische lineare Regression, um die Preise vorherzusagen. Zu den Faktoren gehören BTC-Dominanz, Volumen, Preisverzögerungen und Interaktionsbedingungen. Beta-Koeffizienten messen die Auswirkungen jedes Faktors auf den Preis. 2. Dynamische Preisbands: Konstruiert oberen und unteren Preisbands auf der Grundlage des prognostizierten Preises und der Reststandardabweichung, um überkaufte/überverkaufte Bedingungen zu identifizieren. 3. Signalgeneration: Erzeugt lange Signale, wenn der Preis unter den unteren Bereich mit überverkauftem RSI bricht; kurze Signale, wenn der Preis über den oberen Bereich mit überkauftem RSI bricht. 4. Risikomanagement: Mehrere Schutzmechanismen, einschließlich der Ausreißerfilterung (Z-Score-Methode), Stop-Loss/Take-Profit und ATR-basierten Trailing-Stops. 5. Dynamische Positionierung: Passt die Positionsgröße dynamisch an, basierend auf ATR und vorgegebener Risikoverhältnis.

Strategische Vorteile

  1. Multi-Faktor-Integration: Bietet eine umfassende Marktperspektive, indem mehrere Marktfaktoren berücksichtigt werden.
  2. Starke Anpassungsfähigkeit: Die Preisbandbreiten passen sich dynamisch an die Marktvolatilität an und passen sich den unterschiedlichen Marktbedingungen an.
  3. Umfassende Risikokontrolle: Ein mehrschichtiges Risikomanagement gewährleistet die Sicherheit des Kapitals.
  4. Flexible Konfiguration: Zahlreiche einstellbare Parameter für die Optimierung auf verschiedenen Märkten.
  5. Hohe Signalzuverlässigkeit: Mehrere Filtermechanismen verbessern die Signalqualität.

Strategische Risiken

  1. Modellrisiko: Das Regressionsmodell stützt sich auf historische Daten und kann bei dramatischen Marktveränderungen scheitern.
  2. Parameterempfindlichkeit: Mehrere Parameter erfordern eine sorgfältige Abstimmung, unsachgemäße Einstellungen beeinflussen die Strategieleistung.
  3. Rechenkomplexität: Mehrfaktorberechnungen können sich auf die Echtzeitleistung auswirken.
  4. Abhängigkeit von Marktumgebung: Kann in unterschiedlichen Märkten besser abschneiden als in Trendmärkten.

Optimierungsrichtlinien

  1. Optimierung der Faktorenwahl: Einführung zusätzlicher Marktfaktoren wie Stimmungsindikatoren und Daten in der Kette.
  2. Dynamische Parameteranpassung: Entwicklung adaptiver Parameteranpassungsmechanismen.
  3. Verbesserung des maschinellen Lernens: Einbeziehung von Methoden des maschinellen Lernens zur Optimierung des Vorhersagemodells.
  4. Verbesserung des Signalfilters: Entwicklung zusätzlicher Signalfilterbedingungen zur Verbesserung der Genauigkeit.
  5. Strategieintegration: Kombination mit anderen Strategien zur Verbesserung der Stabilität.

Zusammenfassung

Diese Strategie ist ein theoretisch fundiertes und gut konzipiertes quantitatives Handelssystem. Es prognostiziert Preise durch ein Multifaktor-Regressionsmodell, erzeugt Handelssignale mit dynamischen Preisbändern und verfügt über umfassende Risikomanagementmechanismen. Die Strategie zeigt eine starke Anpassungsfähigkeit und Konfigurationsfähigkeit, die für verschiedene Marktumgebungen geeignet ist. Durch kontinuierliche Optimierung und Verbesserung verspricht diese Strategie eine stabile Rendite im Live-Handel.


/*backtest
start: 2024-12-17 00:00:00
end: 2025-01-16 00:00:00
period: 1h
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT","balance":49999}]
*/

//@version=5
strategy(  title           = "CorrAlgoX", overlay         = true,pyramiding      = 1, initial_capital = 10000, default_qty_type= strategy.percent_of_equity, default_qty_value=200)

//====================================================================
//=========================== GİRİŞLER ================================
//====================================================================

// --- (1) REGRESYON VE OUTLIER AYARLARI
int   lengthReg         = input.int(300, "Regression Window",   minval=50)
bool  useOutlierFilter  = input.bool(false, "Z-skoru ile Outlier Filtrele")

// --- (2) FİYAT GECİKMELERİ
bool  usePriceLag2      = input.bool(false, "2 Bar Gecikmeli Fiyatı Kullan")

// --- (3) STOP-LOSS & TAKE-PROFIT
float stopLossPerc      = input.float(3.0,  "Stop Loss (%)",   step=0.1)
float takeProfitPerc    = input.float(5.0,  "Take Profit (%)", step=0.1)

// --- (4) REZİDÜEL STD BANTI
int   lengthForStd      = input.int(50, "StdDev Length (residual)", minval=2)
float stdevFactor       = input.float(2.0, "Stdev Factor", step=0.1)

// --- (5) RSI FİLTRESİ
bool  useRsiFilter      = input.bool(true, "RSI Filtresi Kullan")
int   rsiLen            = input.int(14, "RSI Length",   minval=1)
float rsiOB             = input.float(70, "RSI Overbought", step=1)
float rsiOS             = input.float(30, "RSI Oversold",   step=1)

// --- (6) TRAILING STOP
bool  useTrailingStop   = input.bool(false, "ATR Tabanlı Trailing Stop")
int   atrLen            = input.int(14, "ATR Length",   minval=1)
float trailMult         = input.float(1.0, "ATR multiplier", step=0.1)

// --- (7) DİNAMİK POZİSYON BÜYÜKLÜĞÜ (ATR tabanlı)
bool  useDynamicPos     = input.bool(false, "Dinamik Pozisyon Büyüklüğü Kullan")
float capitalRiskedPerc = input.float(1.0, "Sermaye Risk Yüzdesi", step=0.1, tooltip="Her işlemde risk alınacak sermaye yüzdesi")

// --- (8) ETKİLEŞİM VE LOG(HACİM) KULLANIMI
bool  useSynergyTerm    = input.bool(true, "BTC.D * Hacim Etkileşim Terimi")
bool  useLogVolume      = input.bool(true, "Hacmi Logaritmik Kullan")

//====================================================================
//======================= VERİLERİ AL & HAZIRLA =======================
//====================================================================

// Mevcut enstrüman fiyatı
float realClose = close

// BTC Dominance (aynı TF)
float btcDom    = request.security("SWAP", timeframe.period, close)

// Hacim
float vol       = volume

// Gecikmeli fiyatlar
float priceLag1 = close[1]
float priceLag2 = close[2]  // (isteğe bağlı)

//----------------- Outlier Filtrelemesi (Z-Skoru) ------------------//
float priceMean  = ta.sma(realClose, lengthReg)
float priceStdev = ta.stdev(realClose, lengthReg)

float zScore     = (priceStdev != 0) ? (realClose - priceMean) / priceStdev : 0
bool  isOutlier  = math.abs(zScore) > 3.0

float filteredClose = (useOutlierFilter and isOutlier) ? na : realClose

// Fiyatın stdev'i (filtrelenmiş)
float fCloseStdev = ta.stdev(filteredClose, lengthReg)

//====================================================================
//=============== ORTALAMA, STDEV, KORELASYON HESAPLARI ==============
//====================================================================

// BTC.D
float btcDomMean    = ta.sma(btcDom, lengthReg)
float btcDomStdev   = ta.stdev(btcDom, lengthReg)
float corrBtcDom    = ta.correlation(btcDom, filteredClose, lengthReg)

// Hacim
float volMean       = ta.sma(vol, lengthReg)
float volStdev      = ta.stdev(vol, lengthReg)
float corrVol       = ta.correlation(vol, filteredClose, lengthReg)

// Fiyat Lag1
float plag1Mean     = ta.sma(priceLag1, lengthReg)
float plag1Stdev    = ta.stdev(priceLag1, lengthReg)
float corrPLag1     = ta.correlation(priceLag1, filteredClose, lengthReg)

// Fiyat Lag2 (isteğe bağlı)
float plag2Mean     = ta.sma(priceLag2, lengthReg)
float plag2Stdev    = ta.stdev(priceLag2, lengthReg)
float corrPLag2     = ta.correlation(priceLag2, filteredClose, lengthReg)

// BTC.D * Hacim (synergyTerm)
float synergyTerm   = btcDom * vol
float synergyMean   = ta.sma(synergyTerm, lengthReg)
float synergyStdev  = ta.stdev(synergyTerm, lengthReg)
float corrSynergy   = ta.correlation(synergyTerm, filteredClose, lengthReg)

// Log(Hacim)
float logVolume     = math.log(vol + 1.0)
float logVolMean    = ta.sma(logVolume, lengthReg)
float logVolStdev   = ta.stdev(logVolume, lengthReg)
float corrLogVol    = ta.correlation(logVolume, filteredClose, lengthReg)

//====================================================================
//===================== FONKSIYON: BETA HESAPLAMA =====================
//====================================================================
// Pine Script'te fonksiyonlar şöyle tanımlanır (tip bildirmeyiz):
getBeta(corrVal, stdevX) =>
    (stdevX != 0 and not na(corrVal) and fCloseStdev != 0)? corrVal * (fCloseStdev / stdevX)  : 0.0

//====================================================================
//======================== BETA KATSAYILARI ===========================
//====================================================================

// BTC Dominance
float betaBtcDom  = getBeta(corrBtcDom,  btcDomStdev)
// Hacim
float betaVol     = getBeta(corrVol,     volStdev)
// Fiyat Lag1
float betaPLag1   = getBeta(corrPLag1,   plag1Stdev)
// Fiyat Lag2
float betaPLag2   = getBeta(corrPLag2,   plag2Stdev)
// synergy
float betaSynergy = getBeta(corrSynergy, synergyStdev)
// logVol
float betaLogVol  = getBeta(corrLogVol,  logVolStdev)

//====================================================================
//===================== TAHMİNİ FİYAT OLUŞTURMA ======================
//====================================================================

float alpha  = priceMean
bool canCalc = not na(filteredClose) and not na(priceMean)

float predictedPrice = na
if canCalc
    // Farklar
    float dBtcDom   = (btcDom - btcDomMean)
    float dVol      = (vol    - volMean)
    float dPLag1    = (priceLag1 - plag1Mean)
    float dPLag2    = (priceLag2 - plag2Mean)
    float dSynergy  = (synergyTerm - synergyMean)
    float dLogVol   = (logVolume   - logVolMean)

    float sumBeta   = 0.0
    sumBeta += betaBtcDom  * dBtcDom
    sumBeta += betaVol     * dVol
    sumBeta += betaPLag1   * dPLag1

    if usePriceLag2
        sumBeta += betaPLag2 * dPLag2

    if useSynergyTerm
        sumBeta += betaSynergy * dSynergy

    if useLogVolume
        sumBeta += betaLogVol * dLogVol

    predictedPrice := alpha + sumBeta

//====================================================================
//======================= REZİDÜEL & BANT ============================
//====================================================================

float residual   = filteredClose - predictedPrice
float residStdev = ta.stdev(residual, lengthForStd)

float upperBand  = predictedPrice + stdevFactor * residStdev
float lowerBand  = predictedPrice - stdevFactor * residStdev

//====================================================================
//========================= SİNYAL ÜRETİMİ ===========================
//====================================================================

bool longSignal  = (realClose < lowerBand)
bool shortSignal = (realClose > upperBand)

//------------------ RSI Filtresi (opsiyonel) -----------------------//
float rsiVal       = ta.rsi(realClose, rsiLen)
bool rsiOversold   = (rsiVal < rsiOS)
bool rsiOverbought = (rsiVal > rsiOB)

if useRsiFilter
    longSignal  := longSignal  and rsiOversold
    shortSignal := shortSignal and rsiOverbought

//====================================================================
//=============== DİNAMİK POZİSYON & GİRİŞ/ÇIKIŞ EMİRLERİ ============
//====================================================================

float myAtr      = ta.atr(atrLen)
float positionSize = na

if useDynamicPos
    float capitalRisked   = strategy.equity * (capitalRiskedPerc / 100.0)
    float riskPerUnit     = (stopLossPerc/100.0) * myAtr
    positionSize          := (riskPerUnit != 0.0) ? (capitalRisked / riskPerUnit) : na

// Long
if longSignal
    if useDynamicPos and not na(positionSize)
        strategy.entry("Long", strategy.long, qty=positionSize)
    else
        strategy.entry("Long", strategy.long)

// Short
if shortSignal
    if useDynamicPos and not na(positionSize)
        strategy.entry("Short", strategy.short, qty=positionSize)
    else
        strategy.entry("Short", strategy.short)

// Stop-Loss & Take-Profit
if strategy.position_size > 0
    strategy.exit( "Long Exit", "Long",stop  = strategy.position_avg_price * (1 - stopLossPerc/100),  limit = strategy.position_avg_price * (1 + takeProfitPerc/100))

if strategy.position_size < 0
    strategy.exit("Short Exit", "Short", stop  = strategy.position_avg_price * (1 + stopLossPerc/100),limit = strategy.position_avg_price * (1 - takeProfitPerc/100))

//------------------ TRAILING STOP (opsiyonel) ----------------------//
if useTrailingStop
    if strategy.position_size > 0
        strategy.exit(  "Long Exit TS", "Long",  trail_points = myAtr * trailMult,  trail_offset = myAtr * trailMult )
    if strategy.position_size < 0
        strategy.exit( "Short Exit TS", "Short", trail_points = myAtr * trailMult, trail_offset = myAtr * trailMult)

//====================================================================
//======================== GRAFİK ÇİZİMLER ===========================
//====================================================================
plot(realClose,      color=color.white,  linewidth=1, title="Fiyat")
plot(predictedPrice, color=color.yellow, linewidth=2, title="PredictedPrice")
plot(upperBand,      color=color.red,    linewidth=1, title="Üst Band")
plot(lowerBand,      color=color.lime,   linewidth=1, title="Alt Band")

plotshape( useOutlierFilter and isOutlier, style=shape.circle, color=color.red, size=size.tiny, location=location.abovebar, title="Outlier", text="Outlier")

Verwandt

Mehr