This strategy is a volume-based dynamic DCA strategy that uses price breakouts. It identifies the most recent price low and starts building positions when the price breaks below that low and the trading volume increases. As the price continues to fall, the strategy dynamically adjusts the quantity of each position based on the size of the floating loss until it reaches the set total number of positions. At the same time, the strategy sets the take-profit price based on the median of the historical price drop percentages.
By dynamically adjusting position sizes and setting parameters based on historical data, this strategy aims to control risk while seeking greater profits during price rebounds. However, the strategy’s performance largely depends on parameter settings and market conditions, and risks still exist. By introducing more indicators, optimizing money management, and using adaptive take-profit and stop-loss, the strategy’s performance can be further improved.
/*backtest start: 2024-04-04 00:00:00 end: 2024-04-11 00:00:00 period: 1m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © AHMEDABDELAZIZZIZO //@version=5 strategy("Qfl Dca strategy", overlay=true) // Parameters swing = input(3 , title = "Swing Points") mediandropmult = input.float(1.1, "Median drop Mult", step=0.1 , tooltip = "The script Calculate The Median Drop for all last Bases That Was cracked you can Increase or decrease it") floatinglossvalue = input(-5 , "Floating Loss" , tooltip = "Position Floating Loss to start firs DCA order") num_orders = input(5 , "Number of all orders" , tooltip = " The number of orders is including the base order and the DCA orders the script will alculate every order qty based on the orders number So that the position size doubles with every order") length = input(20, title="Length of relative volume" ,tooltip = " the length of relative volume indicator") mult = input(2.0, title="Volume Multiplier" , tooltip = "you can adjust the relative volume multiplier to find best parameter") tpmult = input.float(1, step=0.1 ,title = "Take Profit Multiplier" ,tooltip = " By default, the script is set to take profits based on the same median drop percent you can adjust it as you like") // Pivot Calculation p = ta.pivotlow(low, swing, swing) v = ta.valuewhen(p, low[swing], 0) // Variables var float[] lows = array.new_float() var float chn = na // Calculate drops if v < v[1] chn := (v[1] - v) / v[1] * 100 if array.size(lows) < 4000 array.push(lows, chn) else array.shift(lows) array.push(lows, chn) mediandrop = array.avg(lows) maxdrop = array.max(lows) mindrop = array.min(lows) // Table display textcolor = color.white // tabl = table.new(position=position.top_right, columns=4, rows=4) // table.cell(table_id=tabl, column=1, row=1, text="Avg Drop %", width=15, text_color=textcolor) // table.cell(table_id=tabl, column=2, row=1, text="Min Drop %", width=15, text_color=textcolor) // table.cell(table_id=tabl, column=3, row=1, text="Max Drop %", width=15, text_color=textcolor) // table.cell(table_id=tabl, column=1, row=2, text=str.tostring(mediandrop), width=10, text_color=textcolor) // table.cell(table_id=tabl, column=2, row=2, text=str.tostring(mindrop), width=10, text_color=textcolor) // table.cell(table_id=tabl, column=3, row=2, text=str.tostring(maxdrop), width=10, text_color=textcolor) // Plot support t = fixnan(ta.pivotlow(low, swing, swing)) plot(t, color=ta.change(t) ? na : #03f590b6, linewidth=3, offset=-(swing), title="Support") // Calculate relative volume avgVolume = ta.sma(volume, length) relVolume = volume / avgVolume // Base Activation var bool baseisactive = na if not na(p) baseisactive := true // Buy Signal Calculation buyprice = v * (1 - (mediandrop / 100) * mediandropmult) signal = close <= buyprice and relVolume > mult and baseisactive // Take Profit Calculation tpsl = (mediandrop / 100) tp = (strategy.position_avg_price * (1 + (tpsl * tpmult))) // Position Sizing capital_per_order(num_orders, equity) => equity / math.pow(2, (num_orders - 1)) equity_per_order = capital_per_order(num_orders, strategy.equity) qty_per_order(equity_per_order, order_number) => equity_per_order * order_number / close // Calculate floating loss floatingLoss = ((close - strategy.position_avg_price) / strategy.position_avg_price) * 100 // Strategy Entries if signal and strategy.opentrades == 0 strategy.entry("Buy", strategy.long, qty=qty_per_order(equity_per_order, 1)) baseisactive := false for i = 1 to num_orders -1 if signal and strategy.opentrades == i and floatingLoss <= floatinglossvalue strategy.entry("Buy", strategy.long, qty=qty_per_order(equity_per_order, i), comment="DCA Order" + str.tostring(i)) baseisactive := false // Strategy Exit strategy.exit("exit", "Buy", limit=tp) // Plot plot(strategy.position_avg_price, color=color.rgb(238, 255, 0), style=plot.style_linebr, linewidth=2)