Strategi ini adalah strategi DCA dinamis berbasis volume yang menggunakan price breakout. Strategi ini mengidentifikasi harga terendah terbaru dan mulai membangun posisi ketika harga terbalik di bawah harga terendah dan volume perdagangan meningkat. Saat harga terus turun, strategi secara dinamis menyesuaikan jumlah setiap posisi berdasarkan ukuran kerugian mengambang sampai mencapai jumlah total posisi yang ditetapkan. Pada saat yang sama, strategi menetapkan harga take-profit berdasarkan median persentase penurunan harga historis.
Dengan menyesuaikan secara dinamis ukuran posisi dan menetapkan parameter berdasarkan data historis, strategi ini bertujuan untuk mengendalikan risiko sambil mencari keuntungan yang lebih besar selama rebound harga. Namun, kinerja strategi sebagian besar tergantung pada pengaturan parameter dan kondisi pasar, dan risiko masih ada. Dengan memperkenalkan lebih banyak indikator, mengoptimalkan manajemen uang, dan menggunakan adaptif mengambil keuntungan dan stop-loss, kinerja strategi dapat ditingkatkan lebih lanjut.
/*backtest start: 2024-04-04 00:00:00 end: 2024-04-11 00:00:00 period: 1m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © AHMEDABDELAZIZZIZO //@version=5 strategy("Qfl Dca strategy", overlay=true) // Parameters swing = input(3 , title = "Swing Points") mediandropmult = input.float(1.1, "Median drop Mult", step=0.1 , tooltip = "The script Calculate The Median Drop for all last Bases That Was cracked you can Increase or decrease it") floatinglossvalue = input(-5 , "Floating Loss" , tooltip = "Position Floating Loss to start firs DCA order") num_orders = input(5 , "Number of all orders" , tooltip = " The number of orders is including the base order and the DCA orders the script will alculate every order qty based on the orders number So that the position size doubles with every order") length = input(20, title="Length of relative volume" ,tooltip = " the length of relative volume indicator") mult = input(2.0, title="Volume Multiplier" , tooltip = "you can adjust the relative volume multiplier to find best parameter") tpmult = input.float(1, step=0.1 ,title = "Take Profit Multiplier" ,tooltip = " By default, the script is set to take profits based on the same median drop percent you can adjust it as you like") // Pivot Calculation p = ta.pivotlow(low, swing, swing) v = ta.valuewhen(p, low[swing], 0) // Variables var float[] lows = array.new_float() var float chn = na // Calculate drops if v < v[1] chn := (v[1] - v) / v[1] * 100 if array.size(lows) < 4000 array.push(lows, chn) else array.shift(lows) array.push(lows, chn) mediandrop = array.avg(lows) maxdrop = array.max(lows) mindrop = array.min(lows) // Table display textcolor = color.white // tabl = table.new(position=position.top_right, columns=4, rows=4) // table.cell(table_id=tabl, column=1, row=1, text="Avg Drop %", width=15, text_color=textcolor) // table.cell(table_id=tabl, column=2, row=1, text="Min Drop %", width=15, text_color=textcolor) // table.cell(table_id=tabl, column=3, row=1, text="Max Drop %", width=15, text_color=textcolor) // table.cell(table_id=tabl, column=1, row=2, text=str.tostring(mediandrop), width=10, text_color=textcolor) // table.cell(table_id=tabl, column=2, row=2, text=str.tostring(mindrop), width=10, text_color=textcolor) // table.cell(table_id=tabl, column=3, row=2, text=str.tostring(maxdrop), width=10, text_color=textcolor) // Plot support t = fixnan(ta.pivotlow(low, swing, swing)) plot(t, color=ta.change(t) ? na : #03f590b6, linewidth=3, offset=-(swing), title="Support") // Calculate relative volume avgVolume = ta.sma(volume, length) relVolume = volume / avgVolume // Base Activation var bool baseisactive = na if not na(p) baseisactive := true // Buy Signal Calculation buyprice = v * (1 - (mediandrop / 100) * mediandropmult) signal = close <= buyprice and relVolume > mult and baseisactive // Take Profit Calculation tpsl = (mediandrop / 100) tp = (strategy.position_avg_price * (1 + (tpsl * tpmult))) // Position Sizing capital_per_order(num_orders, equity) => equity / math.pow(2, (num_orders - 1)) equity_per_order = capital_per_order(num_orders, strategy.equity) qty_per_order(equity_per_order, order_number) => equity_per_order * order_number / close // Calculate floating loss floatingLoss = ((close - strategy.position_avg_price) / strategy.position_avg_price) * 100 // Strategy Entries if signal and strategy.opentrades == 0 strategy.entry("Buy", strategy.long, qty=qty_per_order(equity_per_order, 1)) baseisactive := false for i = 1 to num_orders -1 if signal and strategy.opentrades == i and floatingLoss <= floatinglossvalue strategy.entry("Buy", strategy.long, qty=qty_per_order(equity_per_order, i), comment="DCA Order" + str.tostring(i)) baseisactive := false // Strategy Exit strategy.exit("exit", "Buy", limit=tp) // Plot plot(strategy.position_avg_price, color=color.rgb(238, 255, 0), style=plot.style_linebr, linewidth=2)