Diese Strategie ist ein Trend-Folgende System, das auf Exponential Moving Average (EMA) und Momentum-Indikatoren basiert. Es erzeugt Handelssignale durch die Kombination von Momentum-Breakthrough-Signalien und EMA-Trendfiltern und führt Trades aus, wenn die Markttrends klar definiert sind. Die Strategie umfasst ein umfassendes Risikomanagementmodul, flexible Handelszeitfilter und detaillierte statistische Analysefunktionen zur Steigerung der Stabilität und Zuverlässigkeit.
Die Kernlogik der Strategie beruht auf mehreren Schlüsselelementen: 1. Momentumsignalidentifikation: Berechnet Momentumwerte über einen vom Benutzer definierten Zeitraum und erzeugt lange Signale, wenn der Momentum über den Schwellenwert und kurze Signale, wenn er darunter bricht. 2. EMA-Trendfilter: Verwendet 200-Perioden-EMA als Trendkriterium und erlaubt Long-Positionen über der EMA und Short-Positionen darunter. 3. Zeitfilter: Konfiguratorische Handelssessions mit GMT-Zeitzone Anpassung Unterstützung für eine bessere Anpassung an verschiedene Markthandelszeiten. 4. Risikokontrolle: Unterstützt Stop-Loss- und Take-Profit-Einstellungen basierend auf ATR oder festem Prozentsatz mit täglichen Handelslimits.
Schwankendes Marktrisiko: Kann häufige falsche Breakout-Signale in seitlichen Märkten erzeugen. vorgeschlagene Lösung: Hinzufügen von Oszillatorfiltern oder Erhöhung der Durchbruchsschwellen.
Das Risiko von Verschiebungen: Es kann während hochvolatiler Perioden erhebliche Verschiebungen auftreten. Angebotene Lösung: Festlegen Sie angemessene Stop-Loss-Bereiche und vermeiden Sie den Handel in Zeiten hoher Volatilität.
Überhandelsrisiko: Häufige Signale können zu einem übermäßigen Handel führen. Vorschläge: Setzen Sie angemessene Tageshandelslimits.
Dies ist eine gut konzipierte Trendfolgestrategie, die Marktchancen durch die Kombination von Momentum-Durchbruch und EMA-Tendenzen erfasst. Die Strategie verfügt über ein komplettes Risikomanagementsystem und leistungsstarke statistische Analysefunktionen, die eine gute Praktikabilität und Skalierbarkeit bieten. Durch kontinuierliche Optimierung und Verbesserung hat diese Strategie das Potenzial, eine stabile Performance in verschiedenen Marktumgebungen zu erhalten.
/*backtest start: 2019-12-23 08:00:00 end: 2024-12-09 08:00:00 period: 2d basePeriod: 2d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=6 strategy("[Mustang Algo] EMA Momentum Strategy", shorttitle="[Mustang Algo] Mom Strategy", overlay=true, initial_capital=10000, default_qty_type=strategy.fixed, default_qty_value=1, pyramiding=0, calc_on_every_tick=false, max_bars_back=5000) // Momentum Parameters len = input.int(10, minval=1, title="Length") src = input(close, title="Source") momTimeframe = input.timeframe("", title="Momentum Timeframe") timeframe_gaps = input.bool(true, title="Autoriser les gaps de timeframe") momFilterLong = input.float(5, title="Filtre Momentum Long", minval=0) momFilterShort = input.float(-5, title="Filtre Momentum Short", maxval=0) // EMA Filter useEmaFilter = input.bool(true, title="Utiliser Filtre EMA") emaLength = input.int(200, title="EMA Length", minval=1) // Position Size contractSize = input.float(1.0, title="Taille de position", minval=0.01, step=0.01) // Time filter settings use_time_filter = input.bool(false, title="Utiliser le Filtre de Temps") start_hour = input.int(9, title="Heure de Début", minval=0, maxval=23) start_minute = input.int(30, title="Minute de Début", minval=0, maxval=59) end_hour = input.int(16, title="Heure de Fin", minval=0, maxval=23) end_minute = input.int(30, title="Minute de Fin", minval=0, maxval=59) gmt_offset = input.int(0, title="Décalage GMT", minval=-12, maxval=14) // Risk Management useAtrSl = input.bool(false, title="Utiliser ATR pour SL/TP") atrPeriod = input.int(14, title="Période ATR", minval=1) atrMultiplier = input.float(1.5, title="Multiplicateur ATR pour SL", minval=0.1, step=0.1) stopLossPerc = input.float(1.0, title="Stop Loss (%)", minval=0.01, step=0.01) tpRatio = input.float(2.0, title="Take Profit Ratio", minval=0.1, step=0.1) // Daily trade limit maxDailyTrades = input.int(2, title="Limite de trades par jour", minval=1) // Variables for tracking daily trades var int dailyTradeCount = 0 // Reset daily trade count if dayofweek != dayofweek[1] dailyTradeCount := 0 // Time filter function is_within_session() => current_time = time(timeframe.period, "0000-0000:1234567", gmt_offset) start_time = timestamp(year, month, dayofmonth, start_hour, start_minute, 0) end_time = timestamp(year, month, dayofmonth, end_hour, end_minute, 0) in_session = current_time >= start_time and current_time <= end_time not use_time_filter or in_session // EMA Calculation ema200 = ta.ema(close, emaLength) // Momentum Calculation gapFillMode = timeframe_gaps ? barmerge.gaps_on : barmerge.gaps_off mom = request.security(syminfo.tickerid, momTimeframe, src - src[len], gapFillMode) // ATR Calculation atr = ta.atr(atrPeriod) // Signal Detection with Filters crossoverUp = ta.crossover(mom, momFilterLong) crossoverDown = ta.crossunder(mom, momFilterShort) emaUpTrend = close > ema200 emaDownTrend = close < ema200 // Trading Conditions longCondition = crossoverUp and (not useEmaFilter or emaUpTrend) and is_within_session() and dailyTradeCount < maxDailyTrades and barstate.isconfirmed shortCondition = crossoverDown and (not useEmaFilter or emaDownTrend) and is_within_session() and dailyTradeCount < maxDailyTrades and barstate.isconfirmed // Calcul des niveaux de Stop Loss et Take Profit float stopLoss = useAtrSl ? (atr * atrMultiplier) : (close * stopLossPerc / 100) float takeProfit = stopLoss * tpRatio // Modification des variables pour éviter les erreurs de repainting var float entryPrice = na var float currentStopLoss = na var float currentTakeProfit = na // Exécution des ordres avec gestion des positions if strategy.position_size == 0 if longCondition entryPrice := close currentStopLoss := entryPrice - stopLoss currentTakeProfit := entryPrice + takeProfit strategy.entry("Long", strategy.long, qty=contractSize) strategy.exit("Exit Long", "Long", stop=currentStopLoss, limit=currentTakeProfit) dailyTradeCount += 1 if shortCondition entryPrice := close currentStopLoss := entryPrice + stopLoss currentTakeProfit := entryPrice - takeProfit strategy.entry("Short", strategy.short, qty=contractSize) strategy.exit("Exit Short", "Short", stop=currentStopLoss, limit=currentTakeProfit) dailyTradeCount += 1 // Plot EMA plot(ema200, color=color.yellow, linewidth=2, title="EMA 200") // Plot Signals plotshape(longCondition, title="Long Signal", location=location.belowbar, color=color.green, style=shape.triangleup, size=size.small) plotshape(shortCondition, title="Short Signal", location=location.abovebar, color=color.red, style=shape.triangledown, size=size.small) // // Performance Statistics // var int longWins = 0 // var int longLosses = 0 // var int shortWins = 0 // var int shortLosses = 0 // if strategy.closedtrades > 0 // trade = strategy.closedtrades - 1 // isLong = strategy.closedtrades.entry_price(trade) < strategy.closedtrades.exit_price(trade) // isWin = strategy.closedtrades.profit(trade) > 0 // if isLong and isWin // longWins += 1 // else if isLong and not isWin // longLosses += 1 // else if not isLong and isWin // shortWins += 1 // else if not isLong and not isWin // shortLosses += 1 // longTrades = longWins + longLosses // shortTrades = shortWins + shortLosses // longWinRate = longTrades > 0 ? (longWins / longTrades) * 100 : 0 // shortWinRate = shortTrades > 0 ? (shortWins / shortTrades) * 100 : 0 // overallWinRate = strategy.closedtrades > 0 ? (strategy.wintrades / strategy.closedtrades) * 100 : 0 // avgRR = strategy.grossloss != 0 ? math.abs(strategy.grossprofit / strategy.grossloss) : 0 // // Display Statistics // var table statsTable = table.new(position.top_right, 4, 7, border_width=1) // if barstate.islastconfirmedhistory // table.cell(statsTable, 0, 0, "Type", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 1, 0, "Win", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 2, 0, "Lose", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 3, 0, "Daily Trades", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 0, 1, "Long", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 1, 1, str.tostring(longWins), bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 2, 1, str.tostring(longLosses), bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 3, 1, str.tostring(dailyTradeCount) + "/" + str.tostring(maxDailyTrades), bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 0, 2, "Short", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 1, 2, str.tostring(shortWins), bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 2, 2, str.tostring(shortLosses), bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 0, 3, "Win Rate", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 1, 3, "Long: " + str.tostring(longWinRate, "#.##") + "%", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 2, 3, "Short: " + str.tostring(shortWinRate, "#.##") + "%", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 0, 4, "Overall", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 1, 4, "Win Rate: " + str.tostring(overallWinRate, "#.##") + "%", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 2, 4, "Total: " + str.tostring(strategy.closedtrades) + " | RR: " + str.tostring(avgRR, "#.##"), bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 0, 5, "Trading Hours", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 1, 5, "Start: " + str.format("{0,time,HH:mm}", start_hour * 60 * 60 * 1000 + start_minute * 60 * 1000), bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 2, 5, "End: " + str.format("{0,time,HH:mm}", end_hour * 60 * 60 * 1000 + end_minute * 60 * 1000), bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 3, 5, "GMT: " + (gmt_offset >= 0 ? "+" : "") + str.tostring(gmt_offset), bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 0, 6, "SL/TP Method", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 1, 6, useAtrSl ? "ATR-based" : "Percentage-based", bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 2, 6, useAtrSl ? "ATR: " + str.tostring(atrPeriod) : "SL%: " + str.tostring(stopLossPerc), bgcolor=color.new(color.blue, 90)) // table.cell(statsTable, 3, 6, "TP Ratio: " + str.tostring(tpRatio), bgcolor=color.new(color.blue, 90))