Esta estrategia basa las decisiones comerciales en las características dinámicas del indicador MACD (Moving Average Convergence Divergence). El enfoque central se centra en observar los cambios en el histograma MACD para predecir posibles cruces de oro y muerte, lo que permite el establecimiento temprano de posiciones.
La estrategia emplea un sistema de indicadores MACD modificado, que incorpora la diferencia entre las medias móviles rápidas (EMA12) y lentas (EMA26), junto con una línea de señal de 2 períodos.
Esta estrategia utiliza de manera innovadora las características dinámicas del histograma MACD para mejorar los sistemas de negociación MACD tradicionales. El mecanismo predictivo proporciona señales de entrada más tempranas, mientras que las estrictas condiciones de negociación y las medidas de control de riesgos aseguran la estabilidad de la estrategia.
/*backtest start: 2019-12-23 08:00:00 end: 2024-11-25 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy(title="Demo GPT - Moving Average Convergence Divergence", shorttitle="MACD", commission_type=strategy.commission.percent, commission_value=0.1, slippage=3, default_qty_type=strategy.percent_of_equity, default_qty_value=100) // Getting inputs fast_length = input(title="Fast Length", defval=12) slow_length = input(title="Slow Length", defval=26) src = input(title="Source", defval=close) signal_length = input.int(title="Signal Smoothing", minval=1, maxval=50, defval=2) // Set smoothing line to 2 sma_source = input.string(title="Oscillator MA Type", defval="EMA", options=["SMA", "EMA"]) sma_signal = input.string(title="Signal Line MA Type", defval="EMA", options=["SMA", "EMA"]) // Date inputs start_date = input(title="Start Date", defval=timestamp("2018-01-01T00:00:00")) end_date = input(title="End Date", defval=timestamp("2069-12-31T23:59:59")) // Calculating fast_ma = sma_source == "SMA" ? ta.sma(src, fast_length) : ta.ema(src, fast_length) slow_ma = sma_source == "SMA" ? ta.sma(src, slow_length) : ta.ema(src, slow_length) macd = fast_ma - slow_ma signal = sma_signal == "SMA" ? ta.sma(macd, signal_length) : ta.ema(macd, signal_length) hist = macd - signal // Strategy logic isInDateRange = true // Calculate the rate of change of the histogram hist_change = hist - hist[1] // Anticipate a bullish crossover: histogram is negative, increasing, and approaching zero anticipate_long = isInDateRange and hist < 0 and hist_change > 0 and hist > hist[1] and hist > hist[2] // Anticipate an exit (bearish crossover): histogram is positive, decreasing, and approaching zero anticipate_exit = isInDateRange and hist > 0 and hist_change < 0 and hist < hist[1] and hist < hist[2] if anticipate_long strategy.entry("Long", strategy.long) if anticipate_exit strategy.close("Long") // Plotting hline(0, "Zero Line", color=color.new(#787B86, 50)) plot(hist, title="Histogram", style=plot.style_columns, color=(hist >= 0 ? (hist > hist[1] ? #26A69A : #B2DFDB) : (hist < hist[1] ? #FF5252 : #FFCDD2))) plot(macd, title="MACD", color=#2962FF) plot(signal, title="Signal", color=#FF6D00) // Plotting arrows when anticipating the crossover plotshape(anticipate_long, title="Long +1", location=location.belowbar, color=color.green, style=shape.arrowup, size=size.tiny, text="Long +1") plotshape(anticipate_exit, title="Short -1", location=location.abovebar, color=color.red, style=shape.arrowdown, size=size.tiny, text="Short -1")