Эта стратегия основывает торговые решения на динамических характеристиках индикатора MACD (Moving Average Convergence Divergence). Основной подход фокусируется на наблюдении за изменениями в гистограмме MACD для прогнозирования потенциальных золотых и смертных перекрестков, что позволяет ранне установить позиции. Стратегия выходит за рамки традиционных сигналов перекрестного MACD, подчеркивая динамические характеристики гистограммы для получения лучшего времени входа.
Стратегия использует модифицированную систему индикаторов MACD, включающую разницу между быстрыми (EMA12) и медленными (EMA26) скользящими средними, а также двухпериодную сигнальную линию.
Эта стратегия инновационно использует динамические характеристики гистограммы MACD для улучшения традиционных торговых систем MACD. Предсказательный механизм обеспечивает более ранние сигналы входа, в то время как строгие условия торговли и меры контроля рисков обеспечивают стабильность стратегии.
/*backtest start: 2019-12-23 08:00:00 end: 2024-11-25 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy(title="Demo GPT - Moving Average Convergence Divergence", shorttitle="MACD", commission_type=strategy.commission.percent, commission_value=0.1, slippage=3, default_qty_type=strategy.percent_of_equity, default_qty_value=100) // Getting inputs fast_length = input(title="Fast Length", defval=12) slow_length = input(title="Slow Length", defval=26) src = input(title="Source", defval=close) signal_length = input.int(title="Signal Smoothing", minval=1, maxval=50, defval=2) // Set smoothing line to 2 sma_source = input.string(title="Oscillator MA Type", defval="EMA", options=["SMA", "EMA"]) sma_signal = input.string(title="Signal Line MA Type", defval="EMA", options=["SMA", "EMA"]) // Date inputs start_date = input(title="Start Date", defval=timestamp("2018-01-01T00:00:00")) end_date = input(title="End Date", defval=timestamp("2069-12-31T23:59:59")) // Calculating fast_ma = sma_source == "SMA" ? ta.sma(src, fast_length) : ta.ema(src, fast_length) slow_ma = sma_source == "SMA" ? ta.sma(src, slow_length) : ta.ema(src, slow_length) macd = fast_ma - slow_ma signal = sma_signal == "SMA" ? ta.sma(macd, signal_length) : ta.ema(macd, signal_length) hist = macd - signal // Strategy logic isInDateRange = true // Calculate the rate of change of the histogram hist_change = hist - hist[1] // Anticipate a bullish crossover: histogram is negative, increasing, and approaching zero anticipate_long = isInDateRange and hist < 0 and hist_change > 0 and hist > hist[1] and hist > hist[2] // Anticipate an exit (bearish crossover): histogram is positive, decreasing, and approaching zero anticipate_exit = isInDateRange and hist > 0 and hist_change < 0 and hist < hist[1] and hist < hist[2] if anticipate_long strategy.entry("Long", strategy.long) if anticipate_exit strategy.close("Long") // Plotting hline(0, "Zero Line", color=color.new(#787B86, 50)) plot(hist, title="Histogram", style=plot.style_columns, color=(hist >= 0 ? (hist > hist[1] ? #26A69A : #B2DFDB) : (hist < hist[1] ? #FF5252 : #FFCDD2))) plot(macd, title="MACD", color=#2962FF) plot(signal, title="Signal", color=#FF6D00) // Plotting arrows when anticipating the crossover plotshape(anticipate_long, title="Long +1", location=location.belowbar, color=color.green, style=shape.arrowup, size=size.tiny, text="Long +1") plotshape(anticipate_exit, title="Short -1", location=location.abovebar, color=color.red, style=shape.arrowdown, size=size.tiny, text="Short -1")