This strategy bases trading decisions on the dynamic characteristics of the MACD (Moving Average Convergence Divergence) indicator. The core approach focuses on observing changes in the MACD histogram to predict potential golden and death crosses, allowing for early position establishment. The strategy goes beyond traditional MACD crossover signals by emphasizing the dynamic characteristics of the histogram to obtain better entry timing.
The strategy employs a modified MACD indicator system, incorporating the difference between fast (EMA12) and slow (EMA26) moving averages, along with a 2-period signal line. The core trading logic is based on several key points:
This strategy innovatively utilizes the dynamic characteristics of the MACD histogram to improve upon traditional MACD trading systems. The predictive mechanism provides earlier entry signals, while strict trading conditions and risk control measures ensure strategy stability. With further optimization and refinement, this strategy shows promise for improved performance in actual trading conditions.
/*backtest start: 2019-12-23 08:00:00 end: 2024-11-25 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy(title="Demo GPT - Moving Average Convergence Divergence", shorttitle="MACD", commission_type=strategy.commission.percent, commission_value=0.1, slippage=3, default_qty_type=strategy.percent_of_equity, default_qty_value=100) // Getting inputs fast_length = input(title="Fast Length", defval=12) slow_length = input(title="Slow Length", defval=26) src = input(title="Source", defval=close) signal_length = input.int(title="Signal Smoothing", minval=1, maxval=50, defval=2) // Set smoothing line to 2 sma_source = input.string(title="Oscillator MA Type", defval="EMA", options=["SMA", "EMA"]) sma_signal = input.string(title="Signal Line MA Type", defval="EMA", options=["SMA", "EMA"]) // Date inputs start_date = input(title="Start Date", defval=timestamp("2018-01-01T00:00:00")) end_date = input(title="End Date", defval=timestamp("2069-12-31T23:59:59")) // Calculating fast_ma = sma_source == "SMA" ? ta.sma(src, fast_length) : ta.ema(src, fast_length) slow_ma = sma_source == "SMA" ? ta.sma(src, slow_length) : ta.ema(src, slow_length) macd = fast_ma - slow_ma signal = sma_signal == "SMA" ? ta.sma(macd, signal_length) : ta.ema(macd, signal_length) hist = macd - signal // Strategy logic isInDateRange = true // Calculate the rate of change of the histogram hist_change = hist - hist[1] // Anticipate a bullish crossover: histogram is negative, increasing, and approaching zero anticipate_long = isInDateRange and hist < 0 and hist_change > 0 and hist > hist[1] and hist > hist[2] // Anticipate an exit (bearish crossover): histogram is positive, decreasing, and approaching zero anticipate_exit = isInDateRange and hist > 0 and hist_change < 0 and hist < hist[1] and hist < hist[2] if anticipate_long strategy.entry("Long", strategy.long) if anticipate_exit strategy.close("Long") // Plotting hline(0, "Zero Line", color=color.new(#787B86, 50)) plot(hist, title="Histogram", style=plot.style_columns, color=(hist >= 0 ? (hist > hist[1] ? #26A69A : #B2DFDB) : (hist < hist[1] ? #FF5252 : #FFCDD2))) plot(macd, title="MACD", color=#2962FF) plot(signal, title="Signal", color=#FF6D00) // Plotting arrows when anticipating the crossover plotshape(anticipate_long, title="Long +1", location=location.belowbar, color=color.green, style=shape.arrowup, size=size.tiny, text="Long +1") plotshape(anticipate_exit, title="Short -1", location=location.abovebar, color=color.red, style=shape.arrowdown, size=size.tiny, text="Short -1")