这是一个基于成交量加权平均价格(VWAP)和Garman-Klass波动率(GKV)的自适应交易策略。该策略通过波动率动态调整VWAP的标准差波段,实现对市场趋势的智能跟踪。当价格突破上轨时开仓做多,突破下轨时平仓,波动率越大突破门槛越高,波动率越小突破门槛越低。
策略的核心是将VWAP与GKV波动率相结合。首先计算VWAP作为价格中枢,然后利用收盘价的标准差构建波段。关键在于使用GKV公式计算波动率,其考虑了开高低收四个价格,比传统波动率更准确。波动率会动态调整波段宽度 - 当波动率升高时,波段变宽,提高突破门槛;当波动率降低时,波段变窄,降低突破门槛。这种自适应机制有效避免了虚假突破。
该策略通过将VWAP与GKV波动率创新结合,实现了对市场的动态跟踪。其自适应特性使其在不同市场环境下都能保持稳定表现。虽然存在一些潜在风险,但通过合理的风险控制和持续优化,策略具有良好的应用前景。
/*backtest start: 2019-12-23 08:00:00 end: 2024-12-18 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("Adaptive VWAP Bands with Garman Klass Volatility", overlay=true) // Inputs length = input.int(25, title="Volatility Length") vwapLength = input.int(14, title="VWAP Length") vol_multiplier = input.float(1,title="Volatility Multiplier") // Function to calculate Garman-Klass Volatility var float sum_gkv = na if na(sum_gkv) sum_gkv := 0.0 sum_gkv := 0.0 for i = 0 to length - 1 sum_gkv := sum_gkv + 0.5 * math.pow(math.log(high[i]/low[i]), 2) - (2*math.log(2)-1) * math.pow(math.log(close[i]/open[i]), 2) gcv = math.sqrt(sum_gkv / length) // VWAP calculation vwap = ta.vwma(close, vwapLength) // Standard deviation for VWAP bands vwapStdDev = ta.stdev(close, vwapLength) // Adaptive multiplier based on GCV multiplier = (gcv / ta.sma(gcv, length)) * vol_multiplier // Upper and lower bands upperBand = vwap + (vwapStdDev * multiplier) lowerBand = vwap - (vwapStdDev * multiplier) // Plotting VWAP and bands plot(vwap, title="VWAP", color=color.blue, linewidth=2) plot(upperBand, title="Upper Band", color=color.green, linewidth=1) plot(lowerBand, title="Lower Band", color=color.red, linewidth=1) var barColor = color.black // Strategy: Enter long above upper band, go to cash below lower band if (close > upperBand) barColor := color.green strategy.entry("Long", strategy.long) else if (close < lowerBand) barColor := color.fuchsia strategy.close("Long") barcolor(barColor)